Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches
نویسندگان
چکیده
This work experimentally investigates model-based approaches for optimizing the performance of parameterized randomized algorithms. Such approaches build a response surface model and use this model for finding good parameter settings of the given algorithm. We evaluated two methods from the literature that are based on Gaussian process models: sequential parameter optimization (SPO) (Bartz-Beielstein et al, 2005) and sequential Kriging optimization (SKO) (Huang et al, 2006). SPO performed better “out-of-the-box,” whereas SKO was competitive when response values were log transformed. We then investigated key design decisions within the SPO paradigm, characterizing the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and a log-transformed objective function. In a domain for which performance results for other (model-free) parameter optimization approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance. Finally, we compare this automated parameter tuning approach to an interactive, manual process that makes use of classical regression techniques. This interactive approach is particularly useful when only a relatively small number of parameter configurations can be evaluated. Because it can relatively quickly draw attention to important parameters and parameter interactions, it can help experts gain insights into the parameter response of a given algorithm and identify reasonable parameter settings.
منابع مشابه
Sequential Model-Based Parameter Optimisation: an Experimental Investigation of Automated and Interactive Approaches
This work experimentally investigates model-based approaches for optimizing the performance of parameterized randomized algorithms. Such approaches build a response surface model and use this model for finding good parameter settings of the given algorithm. We evaluated two methods from the literature that are based on Gaussian process models: sequential parameter optimization (SPO) (Bartz-Beie...
متن کاملSPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization
The sequential parameter optimization (spot) package for R (R Development Core Team, 2008) is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimizat...
متن کاملSPOT: A Toolbox for Interactive and Automatic Tuning in the R Environment
Sequential parameter optimization is a heuristic that combines classical and modern statistical techniques to improve the performance of search algorithms. It includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of different meta-modeling approaches. Th...
متن کاملA Method for Parameter Optimization of Reactive Flow Continuum Models by Sequential Quadratic Programming
This paper presents a procedure for performing parameter optimization of ignition and growth continuum models for high explosive systems. Continuum modeling of reactive flow in high explosive systems can yield highly accurate predictions of experimental observations. However, the numerical parameter optimization that is needed to establish these predictions generally requires many evaluations o...
متن کاملA hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty
The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location–allocation problem, which more cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010